
®

Windows NT®
Operating System

Microsoft Windows NT – The Foundation

White Paper

Abstract

This paper explains the primary design goals of Microsoft® Windows NT® – robustness, extensibility
and maintainability – and explains how these attributes informed and directed each aspect of the initial
system design and its development over the last several years. Windows NT was designed to provide
a solid foundation for future development efforts by Microsoft and the larger development community.
This paper describes the original design process, provides a high-level overview of the architecture,
and concludes with a real-world example of the coding standards implemented and maintained by the
Windows NT design team.

© 1997 Microsoft Corporation. All rights reserved.
The information contained in this document represents the current view of Microsoft
Corporation on the issues discussed as of the date of publication. Because Microsoft
must respond to changing market conditions, it should not be interpreted to be a
commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy
of any information presented after the date of publication.
This White Paper is for informational purposes only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS OR IMPLIED, IN THIS DOCUMENT.
The BackOffice logo, Microsoft, Windows, and Windows NT are registered
trademarks of Microsoft Corporation.
Other product or company names mentioned herein may be the trademarks of their
respective owners.
Microsoft Corporation • One Microsoft Way • Redmond, WA 98052-6399 • USA
0997

CONTENTS INTRODUCTION ...1
The Mission 1
The Design Goals 1
Design Alternatives 2

THE WINDOWS NT DESIGN..3
Maintainability and Extensibility Over Time 3
Built-in Robustness 5

ARGUMENT VALIDATION IN WINDOWS NT7
System Service Requirement 7
Address Space Layout 7
System Service Operation 8

CONCLUSION...10

FOR MORE INFORMATION...11

INTRODUCTION From its inception, Microsoft® Windows NT® was designed to be a robust, portable
operating system that would be maintainable, flexible, and secure over time. This
paper describes the design decisions that were made during the initial planning of
Windows NT, describes each of the design goals in priority order (as documented in
the original design documentation1), and describes how these goals were met in the
system architecture. Finally, the paper provides an example of a subsystem
component specifically designed to meet the goals of robustness and maintainability
over time.

The Mission
When the Windows NT development team was formed in 1989, it had a clear
mission: to design and build a personal computer operating system that would meet
the current and future operating system needs of the PC platform. To meet this
objective, the design team identified the following market requirements:

• To provide easy portability to other 32-bit architectures.
• To provide scalability and multiprocessing support.
• To support distributed computing, allowing multiple computers to share

resources.
• To support the application programming interfaces (APIs) required by POSIX.
• To provide U.S. government Class 2 (C2) security features, and to provide a

path to Class B1 and beyond.

The Design Goals
Based on market requirements and Microsoft’s development strategy, the original
Microsoft NT design team established the a set of prioritized goals. Note that from
the outset, the priority design objectives of Windows NT were robustness and
extensibility:

1. Robustness. The operating system must actively protect itself from internal
malfunction and external damage (whether accidental or deliberate), and must
respond predictably to software and hardware errors. The system must be
straightforward in its architecture and coding practices, and interfaces and
behavior must be well-specified.

2. Extensibility and maintainability. Windows NT must be designed with the
future in mind. It must grow to meet the future needs of original equipment
manufacturers (OEMs) and of Microsoft. And the system must be designed for
maintainability—it must accommodate changes and additions to the API sets it
supports and the APIs should not employ flags or other devices that drastically
alter their functionality.

3. Portability. The system architecture must be able to function on a number of
platforms with minimal re-coding.

1 “NT OS/2 Subsystem Design Rationale,” June 1, 1989.

 Microsoft Windows NT – The Foundation White Paper 1

4. Performance. Algorithms and data structures that lead to a high level of
performance and that provide the flexibility needed to achieve our other goals
must be incorporated into the design.

5. POSIX compliance and government certifiable C2 security. The POSIX
standard calls for operating system vendors to implement UNIX-style
interfaces so that applications can be moved easily from one system to another.
U.S. government security guidelines specify certain protections such as
auditing capabilities, access detection, per-user resource quotas, and resource
protection. Inclusion of these features would allow Windows NT to be used in
government operations.

Design Alternatives
With its primary goals in mind, the development team investigated several
alternatives during the design phase.

The first design layered the POSIX API set over a slightly extended OS/2 API set.
(Originally, the operating system was to have an OS/2-style user interface and was
to provide the OS/2 API as its primary programming interface. However, due largely
to the greater popularity of Microsoft Windows, Microsoft refocused its strategy and
developed the Win32 API, a 32-bit programming interface for development of next-
generation applications.) As the design progressed, it became clear that it would
result in a system that would not be robust, easily maintained, or extensible. A
similar attempt during the development of OS/2 led to considerable change in the
base system capabilities, which further strengthened the team’s conclusion that this
was a poor alternative.

The next design implemented both OS/2 and POSIX API sets directly in the
Windows NT executive. This was an improvement on the previous design, but the
large number of oddly structured and tricky interfaces required by this design
threatened the goals of extensibility and maintainability.

The third design implemented OS/2 and POSIX as protected subsystems outside
the Windows NT executive. This type of client/server architecture had been
successful in the academic community and at other research sites, largely because
it decoupled the more volatile services from the operating system kernel—thus
preserving the integrity of the operating system while allowing system services to
grow and change as necessary. After analysis and an extended mock up and test
cycle, it became clear that this design would provide the robustness, extensibility,
maintainability, portability, and performance that the new operating system required.

The next section of this document provides an overview of Windows NT
architecture, particularly as it relates to the crucial design goals of system
robustness and maintainability over time.

Microsoft Windows NT – The Foundation White Paper 2

THE WINDOWS NT
DESIGN

The Windows NT system design consists of a highly functional executive, which
runs in privileged processor (or kernel) mode and provides system services and
internal processes, and a set of nonprivileged servers called protected subsystems,
which run in nonprivileged (or user) mode outside of the executive. Note that the
executive provides the only entry point into the system—there are no back door
entry points that could compromise security or damage the system in any way.

A protected subsystem executes in user mode as a regular (native) process. The
subsystem may have extended privileges as compared to an application, but it is
not considered a part of the executive and, therefore, cannot bypass the system
security architecture or corrupt the system in any other way. Subsystems
communicate with their clients and each other using high-performance local
procedure calls, or LPCs.

The NT executive includes a set of system service components—the Object
Manager, the Security Reference Monitor, the Process Manager, and so forth—
which are exposed through a set of API-like system services. While the executive
performs some internal routines, it is primarily responsible for taking an existing
process thread from a requesting subsystem or application, validating that the
thread should be processed, executing it, and then returning control of the thread to
the requestor.

Maintainability and Extensibility Over Time
The following efforts ensure that Windows NT meets its goals of maintainability and
extensibility:

• The original developers of Windows NT designed the system to be simple and
provided extensive code documentation. This, coupled with a common coding
standard used throughout the system, has enabled subsequent programmers
to work on any piece of the system without having to consult a system expert to
learn about hidden rules, side effects, magical programming tricks, or
Windows NT folklore. The code is straightforward—as is the documentation.

• By using subsystems to implement major portions of the system, Windows NT
isolates and controls dependencies. For example, the only piece of the system
affected by a change to the POSIX standard is the POSIX subsystem. The
design of the process structure, memory management, synchronization
primitives, and so on, are not affected.

• The Windows NT design accommodates change and growth. Subsystems that
provide additional functionality can be added to the system without impacting
the base system. New subsystems can be added without modifications to the
Windows NT executive; for example, new subsystems can be added to allow
limited support for operating system environments other than the Microsoft-
provided MS DOS, OS/2, Win32, and POSIX environments. Moreover, the
executive itself is modular in design—because its components are independent
from each other and interact in predictable ways, and because the interfaces
between these components are so carefully controlled, it is possible to replace

 Microsoft Windows NT – The Foundation White Paper 3

a component without adversely impacting the system. If the new version
implements all of the system services and internal interfaces correctly, the
operating system will function as before.

• Perhaps most importantly, all subsystems can be coded to take advantage of
the security features provided in Windows NT.

The following illustrates the basic architecture of the operating system through
version 3.51 (note that only a few of the subsystems are illustrated).

System Services

Virtual
Memory
Manager

LPC
Facility

Process
Manager

Security
Reference

Monitor

Object
Manager File Systems

I/O Manager

Cache Manager
Device Drivers

Network Drivers
Microkernel

NT Executive

Hardware Abstraction Layer (HAL)

Hardware

User Mode

Kernel Mode

Logon
Process

Security
Subsystem

OS/2
Subsystem

OS/2
Client

Win32
Subsystem

Win32
Client

POSIX
Subsystem

POSIX
Client

Protected
Subsystems

Applications

Message Passing
System Trap
Hardware Manipulation

Figure 1. Windows NT Basic Architecture – version 3.51 and earlier

In Windows NT 4.0, much of the Win32 graphical user interface (GUI) subsystem—
the Window Manager, Graphics Device Interface (GDI), and related graphics
drivers—were moved from a body of code that executed in the csrss.exe subsystem
process to a kernel mode device driver (win32k.sys).. The console, shutdown, and
hard error handling portions remain in user mode. This change significantly
improves system performance while decreasing memory requirements, and has no
impact on application developers. Applications now access the GUI implementation
subsystems just as they access other system services, such as I/O and memory
management. This change only serves to demonstrate the maintainability and
flexibility of the Windows NT modular design.

Microsoft Windows NT – The Foundation White Paper 4

System Services

I/O Manager

Microkernel

NT Executive

Hardware

User Mode

Kernel Mode

Logon
Process

Security
Subsystem

OS/2
Subsystem

OS/2
Client

Console

Win32
Client

POSIX
Subsystem

POSIX
Client

Protected
Subsystems

Applications

Message Passing
System Trap
Hardware Manipulation

Virtual
Memory
Manager

LPC
Facility

Process
Manager

Security
Reference

Monitor

Object
Manager File Systems

Cache Manager
Device Drivers

Network Drivers

Hardware Abstraction Layer (HAL)

Win32K
Service

Figure 2. Windows NT Basic Architecture – version 4.0

Built-in Robustness
Windows NT meets its primary goal of robustness as follows:

• The kernel mode portion of the system exports well-defined APIs that, in
general, do not have mode parameters or other magic flags. Therefore, the
APIs are simple to implement, easy to test, and easy to document.

• A formal design document was produced for all portions of the Windows NT
system prior to coding. This effort led to well-documented interfaces for native
services and internal functions.

• The partitioning of major components, such as Win32, OS/2, and POSIX, into
separate subsystems resulted in a simple, elegant designs for these
subsystems. Each subsystem implements only those features needed to
provide its API set.

• The prevalent use of frame-based exception handlers (exception handlers
associated with a particular procedure or part of a procedure) allows
Windows NT and its subsystems to catch programming errors and filter bad or
inaccessible parameters in an efficient and reliable manner.

The division of the operating system into kernel-mode system services and
subsystems adds a layer of validation to ensure that poorly behaved applications
can’t crash the operating system.

 Microsoft Windows NT – The Foundation White Paper 5

The next section of this document describes the argument probing and capture
requirements to which all system services must adhere. The requirements
described here are part of a living document that has existed since the project
began in 1989, and serve to illustrate Microsoft’s longstanding commitment to
robustness and maintainability in the Windows NT code base.

Microsoft Windows NT – The Foundation White Paper 6

ARGUMENT
VALIDATION IN
WINDOWS NT

Since its inception, Windows NT development has required that system services be
written to be robust and provide protection against malicious attack and inadvertent
program bugs. To meet the goal of robustness, it must not be possible to crash or
corrupt the system by passing an invalid argument value, a pointer to memory that
is not accessible to the caller, or by dynamically altering or deleting the memory
occupied by an argument in a simultaneously executing thread.

The next few subsections detail some of the standards and coding practices used in
the development of past and future versions of Windows NT.

System Service Requirement
To ensure robust system operation, each system service must ensure that the
arguments on which it operates are valid (that is, the values are correct). This
requires the service to capture the values and probe the argument addresses at
appropriate points. In general, a system service should capture all arguments at the
outset. This ensures that the caller or one of its threads cannot dynamically alter the
value of the argument after it has been read and verified, or delete the memory in
which it is contained.

In some cases, it is not necessary to capture the value of an argument immediately.
Such is the case for I/O buffers and name strings. However, all pointers MUST be
captured and the addresses to which they point MUST be probed for accessibility.

Fortunately, most arguments do not need explicit capture since they are passed in
registers. Arguments that are passed in memory are probed and captured by the
system service dispatcher as necessary.

Address Space Layout
The address space layout of Windows NT clearly separates user address space
from system address space.

• All addresses above the boundary are system addresses and all addresses
below the boundary are user addresses. Furthermore, at the boundary between
user address space and system address space, there is a 64K barrier that is
inaccessible to both modes. With this address space design, it is possible to
determine whether an address is a valid user address simply by comparing
boundaries.

• Pages in the system part of the address space are owned by kernel mode and
are not accessible to the user unless they are double-mapped into the user
portion of the address space. Pages in the user part of the address space are
owned by user mode. The executive never creates a page that is owned by
kernel mode in the user part of the address space.

 Microsoft Windows NT – The Foundation White Paper 7

System Service Operation
System service operation should occur as described in the following paragraphs.

When a system service is called, the trap handler gets control, saves state, and
transfers control to the system service dispatcher. The system service dispatcher
determines which system service is being called, and obtains the address of the
appropriate function and the number of in-memory arguments from a dispatch table.

If the previous processor mode is user and there is one or more in-memory
arguments, the in-memory argument list is probed and copied to the kernel stack.

• If an access violation occurs during the copy, the system service finishes with a
status of “Access Violation.”

• If an access violation does not occur, the pointer to the in-memory argument list
is changed to point to the copy of the arguments on the kernel stack.

The system service dispatcher sets up a catch-all condition handler and then calls
the system service function.

The system service establishes an exception handler. This handler should handle
any access violation that may occur as argument pointers are de-referenced to read
or write actual argument values.

The system service obtains the previous processor mode.

• If the previous mode was kernel, there is no need to probe any arguments. The
executive does not call one of its own services and provide bad arguments.

• If the previous mode was user, any argument values that are read or written by
de-referencing a pointer must be probed for accessibility. To probe a pointer,
the service first ensures that the address of the variable is within the user's
address space, and then reads or writes the variable as appropriate. The code
that actually probes pointer-related arguments does not set up a condition
handler. It merely does a boundary check and then reads or writes the
indicated location. If the boundary check fails or if the memory is inaccessible,
an access violation occurs. (Note that probes are not expensive in terms of
system resources.)

The code at the beginning of a system service should be constructed as follows:

PreviousMode = KeGetPreviousMode();
if (PreviousMode != KernelMode) {
 try {
 ProbeForWrite(ProcessInformation,
 ProcessInformationLength,
 sizeof(ULONG));
 if (ARGUMENT_PRESENT(ReturnLength)) {
 ProbeForWriteUlong(ReturnLength);
 }
 } except(EXCEPTION_EXECUTE_HANDLER) {
 return GetExceptionCode();

Microsoft Windows NT – The Foundation White Paper 8

 }
}

This code sequence guarantees that all address parameters that the service is
going to write through are valid user-mode addresses. If any of the probes were to
fail, an exception would occur and the exception code would be returned as the
service status. Since for this service, ProcessInformation, and ReturnLength are
direct arguments to the service, they do not need to be captured manually inside the
service. The system service dispatcher captures them on entry to the system.

 Microsoft Windows NT – The Foundation White Paper 9

CONCLUSION From the outset, Windows NT was designed to be a robust, reliable operating
system that could be easily maintained and that could be extended to take
advantage of new technologies as they were developed. The system includes a
highly functional executive that executes in kernel mode, and provides native
system services. The executive provides the sole, secure entry point into the
system—there are no back door entry points that could compromise security or
damage the system in any way. In addition, the design includes a layer of protected
system services that function in user mode between the application layer and the
operating system. This modular approach allows additional crucial services to be
added—with no change to the executive layer. Each major executive subsystem
has been extensively documented to ensure that standard coding practices are
used and that all features adhere to the system design and are maintainable over
time.

This design has remained virtually unchanged from 1989 until now. It provides the
foundation for all versions of Windows NT to date, including the highly distributed
version that will be shipped in 1998.

Microsoft Windows NT – The Foundation White Paper 10

 Microsoft Windows NT – The Foundation White Paper 11

FOR MORE
INFORMATION

For more information on the design and architecture of Windows NT, refer to the
product documentation. Historical information about the development and early
design of Windows NT can be found in Inside Windows NT from Microsoft Press.

For the latest information on Windows NT Server, check out our World Wide Web
site at http://www.microsoft.com/ntserver the Windows NT Server Forum on the
Microsoft Network (GO WORD: MSNTS).

	INTRODUCTION
	The Mission
	The Design Goals
	Design Alternatives

	THE WINDOWS NT DESIGN
	Maintainability and Extensibility Over Time
	Built-in Robustness

	ARGUMENT VALIDATION IN WINDOWS NT
	System Service Requirement
	Address Space Layout
	System Service Operation

	CONCLUSION
	FOR MORE INFORMATION

